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Overview 

 Project start date:  Oct 2009 
 Project end date:  Sep 2014 
 Percent complete:  50% 

 FY11:  $640 K 
 FY12:  $700 K 

Timeline 

Budget 

Barriers 

 Storage Systems Analysis Working 
Group (SSAWG)  

 Hydrogen Storage Engineering Center of 
Excellence (HSECoE) 

 LLNL, PNNL, SA 
 Ford, University of Oregon 
 TIAX, LANL, BNL, SRNL 

Partners/Interactions 

 H2 Storage Barriers Addressed: 
– A:  System Weight and Volume 
– B:  System Cost 
– C:  Efficiency 
– E:  Charging/Discharging Rates 
– J:  Thermal Management 
– K:  Life-Cycle Assessments 
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Objectives and Relevance 

 Conduct independent systems analysis for DOE to gauge the 
performance of H2 storage systems 

 Provide results to material developers for assessment against 
performance targets and goals and help them focus on areas 
requiring improvements 

 Provide inputs for independent analysis of costs of on-board 
systems.  

 Identify interface issues and opportunities, and data needs for 
technology development  

 Perform reverse engineering to define material properties needed to 
meet the system level targets 
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Approach 
 Develop thermodynamic and kinetic models of processes in physical, 

complex metal hydride, sorbent, and chemical H2 storage systems 
– Address all aspects of on-board and off-board storage targets, 

including capacity, charge/discharge rates, emissions, and efficiencies 
– Assess improvements needed in materials properties and system 

configurations to achieve storage targets 
 Select model fidelity to resolve system-level issues 

– On-board system, off-board spent fuel regeneration, reverse 
engineering 

– Conduct trade-off analyses, and provide fundamental understanding  
of system/material behavior 

– Calibrate, validate, and evaluate models 
 Work closely with DOE technology developers, HSECoE and others in 

obtaining data 
 Participate in SSAWG meetings and communicate modeling, analysis 

approach, and results to foster consistency among DOE-sponsored 
analysis activities 
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Summary: FY2012 Technical Accomplishments 
1. Compressed H2 storage 

– Carbon fiber requirements: ABAQUS simulations 

– Fast fill: CFX simulations 
– Cost study: Input to SA 

2. Cryo-compressed H2 storage 
– Dormancy enhancement by natural para-to-ortho conversion 

3. H2 storage in MOF-5 (wrapped up) 
– Capacity enhancement by catalyzed para-to-ortho conversion 

4. H2 storage in alane (on-board system analysis wrapped up) 
– Off-board regeneration by organo-metallic (BNL) and electrochemical 

routes (SRNL) 
5. H2 storage in ammonia borane (on-board system analysis wrapped up) 

– AB regeneration: benzophenone route for hydrazine production 
6. H2 storage in CBN (in cooperation with University of Oregon) 

– Reaction kinetics and conversion in catalytic reactors 
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Compressed H2 Storage 

 Carbon fiber in cH2 tanks accounts for >75% of onboard system cost 
and ~60% of system weight. Reducing the amount of CF usage is 
one of DOE’s major initiatives in physical storage 

 ANL is performing analyses to identify opportunities for CF savings 

 ABAQUS 6.11-2 with Wound Composite Modeler extension 

 Set up 5º azimuthal strip FE model 

– Geodesic dome shape with  
varying fiber angles over dome 

– Non-linear analysis 

– 3D quadratic solid elements 

– Cyclic boundary conditions on  
5º azimuthal strip  

– Symmetric boundary conditions  
along axial direction 

5º 
Fiber angles 
changing 
over the 
dome 
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Determination of Hoop and Helical Layer Thicknesses 
 High stress locations 
 - Cylinder, shoulder, boss  
 Need sufficient hoop and helical 

layers to protect all three high 
stress locations 
– Hoop layers to protect cylinder, 

helical layers to protect dome 
– Add “doilies” to reinforce boss 
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Optimization of CF Usage 

 Filament winding only 
– Number of helical layers wound through cylindrical section is 

more than necessary to absorb the axial stress 
  Integrated End Cap Vessel (IECV) 

– Reduce number of helical layers in 
filament winding  

– Reinforce domes with end caps 
made of carbon fibers by resin 
transfer molding (RTM) 

– Blow molding of end cap and boss 
with liner 

– Optimize end cap shape and weight 
to minimize stress concentration at 
liner interface 

  Conducting trade-off analyses to relate CF cost, manufacturing 
processes, and weight and volume 
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Filament Winding Over End Caps 
Filament winding over end caps 

 Carbon-fiber end caps 
 Thickness = 5 mm, weight = 4.6 kg 
 Determined minimum number of 

helical windings for design load 
 18% reduction in CF composite 

weight vs. base case (filament 
winding only) 

Case FE Model Helical 
Thickness

Hoop 
Thickness

CF 
Composite

CF 
Composite 
Reduction

Remarks

ID ID mm mm kg** wt%

Base SB-10N14 10.4 14.8 75.9 - No end caps

1 SB-8N14-EC 8.8 14.8 74.4 2 5-mm end caps

2 SB-7N14-EC 7.8 14.8 70.8 6.7 5-mm end caps

3 SB-6N14-EC 6.5 14.8 66.1 12.9 5-mm end caps

4 SB-5N14-EC 5.5 14.8 62.6 17.5 5-mm end caps
**Main assumptions: 2550 MPa tensile strength; 80% translation efficiency;
60% fiber volume; 1 helical/hoop stress ratio; 2.25 safety factor
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Analysis of 70-MPa Fast Fill with CFX 
 Pre-cooling at fueling station is 

needed for 70-MPa fast fill 
 Investigate ways to reduce or 

eliminate pre-cooling 
– Increase HDPE and CF 

composite thermal 
conductivities 

– Promote mixing with new fill 
tube designs 

 CFX simulations 
– 1.5 kg/min refueling rate 
– Initial P = 2 MPa, T = 20oC 
– 5-mm HDPE liner, 0.5 W/m.K 
– 2.6-cm T700S, 9.4 W/m.K 
– Inlet H2 T = -40oC to 20oC 
– 5 W/m2.K external heat transfer 

coefficient 
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 A five-fold to ten-fold increase in the HDPE liner thermal conductivity 
has the potential to reduce the liner temperature by up to 20oC 

– Liner temperature < 85oC with ambient fuel temperature 
– Six-fold increase in conductivity with 30% SWNT in HDPE* 

 Increase in CF composite conductivity has insignificant impact 
 

Effect of Liner Thermal Conductivity on Temperature 

* Haggenmuler et al., “Single Wall Carbon Nanotube/Polyethelene Nanocomposites: Thermal and 
Electrical Conductivity,” Macromolecules, 2007, 40, 2417-2421 
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Thermodynamics & Kinetics of Para-Ortho Conversion 
 A tank charged with para LH2 can potentially absorb 524 kJ.kg-1 as 

pH2 is converted to nH2 (25% para)  
 Extremely slow gas phase conversion of pH2 to oH2  

– May help extend dormancy since rate increases with P and T 
 Rapid catalytic conversion on commercial Ni-on-silica catalyst 

– Time constant of the order of refueling time 
 FitzGerald, Physical Rev. B 81, 104305 (2010): oH2 converts to pH2 

on occupied sites in MOF-74 at 40 K within minutes but conversion is 
slower on MOF-5 
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Cryogenic Hydrogen Storage in MOF-5 

Vacuum 
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Adiabatic LH2 refueling 
 Enhanced capacities due to endothermic cooling by pH2 to oH2 

conversion during refueling 
 Minimum bed permeability and conductivity for heating by H2 recycle 

during discharge 
Parameter Reference Values 

Sorbent MOF-5 (Basolite Z100-H) Powder: Zhou, J. Phys. Chem. C 2007, 111 
Pellets: Sudik, AIChE Meeting, 2010 

Skeletal density 2030 kg.m -3 

Crystallographic density 610 kg.m -3  

Bulk density 130 kg.m -3  (powder), 310-790 kg.m -3  (pellets) 
Thermal conductivity 0.088 W.m -1 .K -1 

Insulation Multi-Layer Vac. Super Insulation Aluminized Mylar sheets, Dacron spacer 
Layer density 28 cm -1 

Density 59.3 kg.m -3 

Pressure 10 -5  torr 
Effective conductivity 5.2x10 -4  W.m -1 .K -1 

Tank T700S Carbon Fiber Toray Carbon Fiber 
Tensile strength 2550 MPa 
Density 1600 kg.m -3 

L/D 3 
Liner Al 6061-T6 alloy, 5500 PT cycles, 125% NWP 
Shell 3.2-mm thick Al 6061-T6 alloy alloy 

Refueling Adiabatic Refueling with LH 2 
LH 2  pump efficiency 60-70% 
Storage temperature Function of storage pressure 
Temperature swing Function of storage pressure and temperature 

Discharge H 2  Recirculation 
Temperature 273 K 
Recirculation rate TBD 

Balance of Miscellaneous weight 16 kg 
System Miscellaneous volume 10 L 
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Adiabatic Refueling of MOF-5 Powder and Pellets 
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System Storage Capacity: MOF-5 Powder & Pellets 
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MOF-5 System Capacity: Effect of Storage Pressures 

0

1

2

3

4

5

6

7

  

G
ra

vi
m

et
ric

 C
ap

ac
ity

 (w
t%

)

130 kg.m-3

310 kg.m-3

510 kg.m-3

Minimum P: 5 atm

P  T ∆T P  T ∆T P  T ∆T
atm K K wt% kg.m-3 atm K K wt% kg.m-3 atm K K wt% kg.m-3

Bulk Density
Frozen H2 100 60 29 6.6 30.9 110 60 5 4.8 27.6 200 102 0 3.3 26.2
Equilibrium H2 100 50 49 7.4 38.2 100 50 18 5.5 34.6 150 80 41 4.1 32.9

System System System 

130 kg.m-3 310 kg.m-3 510 kg.m-3

0

1

2

3

4

5

6

7

8

  

G
ra

vi
m

et
ric

 C
ap

ac
ity

 (w
t%

)

130 kg m-3

310 kg m-3

510 kg m-3

Equilibrium H2 composition

0

5

10

15

20

25

30

35

40

50 100 150 200 250 300
Storage Pressure (atm)

Vo
lu

m
et

ric
 C

ap
ac

ity
 (k

g.
m

-3
) 130 kg.m-3

310 kg.m-3

510 kg.m-3

Minimum P: 5 atm

0

5

10

15

20

25

30

35

40

45

50 100 150 200 250
Storage Pressure (atm)

Vo
lu

m
et

ric
 C

ap
ac

ity
 (k

g 
m

-3
)

130 kg m-3

310 kg m-3

510 kg m-3

Equilibrium H2 composition



17 

H2 Storage in CBN Heterocycle Materials 
Data from S-Y Liu, U. Oregon, ST038 
        2R1 = R2 + 2α1H2 
        3R2 = 2R3 + 2α2H2 
         α1 = 1, α2 = 3 
Peaks in derived reaction rates 
 Self-inhibited catalytic reactions 
 Consistent conversions at lower 3 

and 1 mol% catalyst loadings 

R1: BN-methylcyclopentane 
R2: Dimer 
R3: Trimer 

W. Luo, P.G. Campbell, L.N. Zakharov, S-Y Liu, J. Am. Chem. Soc., 133 (2011) 19326 - 19329 
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CBN Reactor Performance 
 Need 65 - 85% spent CBN recycle to maintain peak reactor 

temperature below 150oC (decomposition temperature) 
–  ∆h = 18-20 kJ.mol-H2

-1 
 Need more rapid or dispersed catalyst for conversion in < 10 s at 

150oC (more active catalysts identified by Luo) 
 Next steps 

– Mechanism-based rates, complete system analysis 
– Alternate catalysts, rate data at 120oC and with dilute feeds 
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 LANL has developed a one-pot process for regenerating spent AB 
using hydrazine (N2H4) as the limiting reagent in liquid ammonia 

– BNH2 + N2H4    →   BH3NH3 + N2 
 Analyzed three methods of hydrazine production 

 Bayer Ketazine, feed materials: Cl2, NaOH, and NH3 (commercial) 
 PCUK process, feed materials: H2O2 and NH3 (commercial) 

 Benzophenone process, feed materials: NH3 (verified in the lab) 

AB Regeneration Using Hydrazine 
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 One-third of H2 needed to make N2H4 from NH3 forms H2O 

 BK: Excessive amount of electricity required to produce NaOH/Cl2  
 PCUK: Large amount of steam consumed in making H2O2  
 Benzophenone Process: 50% higher efficiency, 33% less emissions 

than in PCUK  
 

FCHtool Analysis: AB Regeneration Using Hydrazine 

AB Regeneration VOC CO NOx PM10 SOx CH4 N2O CO2 GHGs

Hydrazine - Ketazine 9.5 28.6 97.4 85.6 156.0 177.3 1.4 96866 101350
Hydrazine - PCUK 6.5 18.9 52.2 14.1 25.6 148.0 0.7 59290 62913
Hydrazine - Benzophenone 4.3 12.3 33.8 12.4 22.0 93.6 0.5 39762 42051

 GHG emissions, g/kg-H2 in AB 

NG Electricity NG Electricity NG Electricity

NH3 Production 258 5 169 5 258 5

H2O2 Production 331 - - - - -

NaOH/Cl2 Production - - 65 870 - -

Hydrazine Production 227 - 246 - 253 -

AB Regeneration 45 104 45 104 45 104

Total Primary Energy (MJ) 861 109 525 979 556 109

WTT Efficiency (%)

Benzophenone

18.1

Process
BayerPCUK

12.4 8.0
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Collaborations 

– Argonne develops the storage system configuration, determines 
performance, identifies and sizes components, and provides this 
information to TIAX and SA for manufacturing cost estimation 

Compressed H2 (cH2) PNNL, SA

Cryo-Compressed H2 

(CcH2)
LLNL, BMW

Metal Hydrides BNL
Chemical Hydrides LANL, University of Orgeon
Sorbents Ford
GHG Emissions ANL (GREET)

Off-Board Spent Fuel 
Regeneration BNL, LANL, SRNL

Off-Board Cost ANL (H2A Group), ANL (HDSAM)
On-Board Cost TIAX, SA

SSAWG HSECoE, DOE, LLNL, OEMs,Tank 
Manufactures, SA, TIAX
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Future Work 
Physical Storage 
  Propose and analyze methods of reducing carbon fiber (CF) content 
 (doilies, end caps, winding angle) and cost of 700-bar storage tanks 
 (SA collaboration) 
  Validate results on CF reduction methods with laboratory data on 
 coupons (mechanical properties) 
  Validate finite element model against experimental and field data 
   (collaboration with PNNL led project) 
  Improved nozzles and liners for fast-fill (analysis and validation) 
  Supercritical cryo-compressed storage concepts (LLNL) 
Material Based Storage  
  Provide system analysis support (catalytic activity, reactor, operating 
 conditions) to U Oregon effort to develop CBN heterocycle materials  
  Develop flowsheets and determine efficiencies of proposed spent 
   CBN regeneration chemistries   
Off-board Analyses 
  Fuel cycle efficiency of alane/AB regeneration (SRNL collaboration) 
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Project Summary 
Relevance: Independent analysis to evaluate on-board and off-board 

performance of materials and systems 

Approach: Develop and validate physical, thermodynamic and kinetic 
models of processes in physical and material-based systems 
Address all aspects of on-board and off-board targets including 
capacities, rates and efficiencies 

Progress: Analyzed methods to achieve 20% reduction in CF requirement 
for 700-bar storage vessels 
Proposed method to reduce or eliminate pre-cooling in fast fill 
Enhanced capacity of LH2 refueled MOF-5 system by 10-40% 
through catalytic pH2-to-oH2 conversion 
Determined optimum conditions for H2 discharge from a 
promising CBN material 
Analyzed benzophenone process for 50% increase in AB 
regeneration efficiency 

Collaborations: SSAWG, HSECoE, LANL, LLNL, PNNL, U. Oregon, TIAX, SA 

Future Work: Propose, analyze and validate methods of reducing cost of CF 
wound storage tanks 
Provide system analysis support to U. Oregon project on 
development of CBN heterocycle materials 




